
Feasibility and Real-World Implications of Web Browser
History Detection

Artur Janc
artur@lingro.com

Lukasz Olejnik
lukasz.olejnik@man.poznan.pl

ABSTRACT
Browser history detection through the Cascading Style Sheets
visited pseudoclass has long been known to the academic se-
curity community and browser vendors, but has been largely
dismissed as an issue of marginal impact.

In this paper we present several crucial real-world consid-
erations of CSS-based history detection to assess the feasi-
bility of conducting such attacks in the wild. We analyze
Web browser behavior and detectability of content returned
via various protocols and HTTP response codes. We develop
an algorithm for efficient examination of large link sets and
evaluate its performance in modern browsers. Compared to
existing methods our approach is up to 6 times faster, and is
able to detect as many as 30,000 links per second in recent
browsers on modern consumer-grade hardware.

We present a web-based system capable of effectively de-
tecting clients’ browsing histories and categorizing detected
information. We analyze and discuss real-world results ob-
tained from 271,576 Internet users. Our results indicate that
at least 76% of Internet users are vulnerable to history de-
tection; for a test of most popular Internet websites we were
able to detect, on average, 62 visited locations. We also
demonstrate the potential for detecting private data such
as zipcodes or search queries typed into online forms. Our
results confirm the feasibility of conducting attacks on user
privacy using CSS-based history detection and demonstrate
that such attacks are realizable with minimal resources.

1. INTRODUCTION
Web browsers function as generic platforms for applica-

tion delivery and provide various usability enhancements
and performance optimizations, many of which have impli-
cations for user privacy. One of the earliest such usability
improvements was the ability to style links to Web pages vis-
ited by the user differently from unvisited links, introduced
by the original version of the CSS standard[2] and quickly
adopted by all major Web browsers. This mechanism was
quickly demonstrated to allow malicious Web authors to de-
tect which links a client had[1].

Since then, a body of academic work was created on the
topic, describing history detection methods[13] and discussing
the potential to detect visited websites to aid in phishing[16,
21]. Countermeasures against such attacks were proposed,
including client-side approaches through browser extensions[15]
and server-side solutions on a per-application basis[17], but
such methods have not been adopted by browser vendors or
Web application developers. Simultaneously, several demon-
stration sites have been created to show the ability to detect

known popular websites, including Web 2.0 applications[7].
Initial academic work and all known demonstrations focused
on gathering information about the domain names of known
sites and potentially applying it for inferring user-related
information.

More recently, CSS-based history detection started to be-
come applied as a powerful component of privacy research,
including work to determine the amount of user-specific in-
formation obtainable by ad networks[9] and as part of a
scheme for deanonymizing social network users[14].

However, there has been a notable lack of work exam-
ining several crucial aspects of history detection, including
the types of browser-supported protocols and resource types
which can be detected, performance considerations, and the
number of users affected by such attacks. Perhaps because
of the lack of such large-scale studies no Web browser vendor
has yet implemented any kind of protection against history
detection attacks1.

In this paper, we provide a detailed examination of CSS-
based history detection techniques and their impact on the
privacy of Internet users. We provide an overview of exist-
ing work, and discuss basic cross-browser implementations
of history detection using JavaScript as well as a CSS-only
technique. We evaluate the detectability of resources based
on the browser-supported protocols used to retrieve them,
analyze the effect of loading content in frames and iframes,
as well as review the impact of HTTP redirects and other
response codes.

We also demonstrate an optimized algorithm for detect-
ing visited links and its JavaScript implementation. We pro-
vide detailed performance measurements and compare it to
known methods. Our approach is, up to six times faster
than known methods, and allows for the examination of up
to 30,000 links per second on modern hardware. We also
provide the first performance analysis of the CSS-only tech-
nique, demonstrating its value as an efficient, though often
neglected, alternative to the scripting approach.

Based on our work on a real-world testing system[8], we
provide an overview of the design of an efficient history
detection application capable of providing categorized test
of various website classes, and realizable with minimal re-
sources. We discuss approaches for the selection of links
to be detected, and outline our implemented solution based
on primary links (as site entry points), secondary resources,
and enumeration elements.

1Since writing the original draft of this article, we have
learned of plans to mitigate against such attacks in an up-
coming release of the Mozilla Firefox browser[12].

Finally, we analyze history detection results obtained from
271,576 users. We demonstrate that a large majority (76.1%)
of Internet users are vulnerable to history detection attacks.
We analyze the average number of primary and secondary
links found for a basic test, and provide examples of privacy-
sensitive data gathered by our system.

Our results indicate that properly prepared history detec-
tion attacks have significant malicious potential and can be
targeted against the vast majority of Internet users.

2. BACKGROUND
The CSS visited pseudoclass has been applied to links vis-

ited by client browsers since the introduction of the CSS1
standard in an early stage of the Web, in 1996[2]. The fea-
ture of applying different styles to ”known” links quickly be-
came accepted by users and was recommended by various
usability experts[4].

The ability to use the visited pseudoclass for detecting
Web users’ browsing history was first reported to browser
vendors as early as the year 2000[11, 1]. Since then, the
technique has been independently rediscovered and disclosed
several times[16], and has become widely known among Web
browser developers and the security and Web standards com-
munities. In fact, Chapter 5.11.2 of the CSS 2.1 standard[3],
a W3C recommendation since 1998, discusses the potential
for history detection using the :visited pseudoclass, and ex-
plicitly allows conforming User Agents to omit this function-
ality for privacy reasons, without jeopardizing their compli-
ance with the standard.

While initial discussions of CSS-based history detection
were mostly conducted in on-line forums, the issue was also
disclosed to the academic community and discussed in the
work of Felden et al. in conjuction with cache-based history
sniffing[13].

As a response, Jakobsson and Stamm discussed potential
methods for implementing server-side per-application pro-
tection measures[17]; such techniques would have to be im-
plemented by every Web-based application and are thus an
extremely unlikely solution to the problem. A viable client-
side solution was a proposed modification to the algorithm
for deciding which links are to be considered visited as de-
scribed in [15] and implemented in the SafeHistory exten-
sion[6] for Mozilla Firefox. Unfortunately, no such protec-
tion measures were implemented for other Web browsers,
and the SafeHistory plugin is not available for more recent
Firefox versions.

Other academic work in the area included a scheme for in-
troducing voluntary privacy-oriented restrictions to the ap-
plication of history detection[20]. Two more recent direc-
tions were applications of history detection techniques to de-
termine the amount of user-specific information obtainable
by ad networks [9] and as part of a scheme for deanonymiz-
ing social network users[14].

CSS-based history detection was also discussed as a po-
tential threat to Web users’ privacy in several analyses of
Web browser security[23][18].

Outside of the academic community, several demonstra-
tion sites were created to demonstrate specific aspects of
browser history detection. Existing applications include a
script to guess a visitor’s gender by combining the list of de-
tected domains with demographic information from [5] and a
visual collage of visited Web 2.0 websites[7]. All such known
demonstrations focus on detecting domains only, and do not

<style >

#foo:visited {background: url(/?yes -foo);}

#bar:link {background: url(/?no-bar);}

</style >

Figure 1: Basic CSS Implementation.

attempt to discover any intra-domain resources or attach
semantic information to detected links.

3. ANALYSIS
In order to fully evaluate the implications of CSS-based

history detection, it is necessary to understand how and
when Web browsers apply styles to visited links. In this
section we analyze various browser behaviors related to vis-
ited links, describe an efficient algorithm for link detection
and evaluate its performance in several major browsers2.

3.1 Basic Implementation
CSS-based history detection works by allowing an attacker

to determine if a particular URL has been visited by a
client’s browser through applying CSS styles distinguishing
between visited and unvisited links. The entire state of the
client’s history cannot be directly retrieved; to glean his-
tory information, an attacker must supply the client with
a list of URLs to check and infer which links exist in the
client’s history by examining the computed CSS values on
the client-side. As noted in [11], there are two basic tech-
niques for performing such detection.

The CSS-only method, as shown in Figure 1, allows an
attacker’s server to learn which URLs victim’s browser con-
siders to be visited by issuing HTTP requests for background
images on elements linking to visited URLs. A similar, but
less known technique is to use the link CSS pseudoclass,
which only applies if the link specified as the element’s href
attribute has not been visited; the techniques are comple-
mentary.

This basic CSS functionality can also be accessed within
JavaScript by dynamically querying the style of a link (<a>)
element to detect if a particular CSS style has been applied,
as shown in Figure 2. Any valid CSS property can be used
to differentiate between visited and unvisited links. The
scripting approach allows for more flexibility on part of the
attacker, as it enables fine-grained control over the execution
of the hijacking code (e.g. allows resource-intensive tests to
be run after a period of user inactivity) and can be easily ob-
fuscated to avoid detection by inspecting the HTML source.
It can also be modified to utilize less network resources than
the CSS-only method.

Both the CSS styling of visited links, and the JavaScript
getComputedStyle function have many legitimate uses and
are relied upon by Web developers. The ability to apply dif-
ferent styles to visited links serves as a powerful visual aid in
website navigation, and was one of the requirements during

2Browser behavior and performance results were gathered
with Internet Explorer 8.0, Mozilla Firefox 3.6, Safari 4,
Chrome 4, and Opera 10.5 on Windows 7 using an Intel
Core 2 Quad Q8200 CPU with 6GB of RAM.

<s c r i p t >
var r1 = ’ a { c o l o r : green ;} ’ ;
var r2 = ’ a : v i s i t e d { c o l o r : red ;} ’ ;

document . s t y l e S h e e t s [0] . i n s e r tR u l e (r1 , 0) ;
document . s t y l e S h e e t s [0] . i n s e r tR u l e (r2 , 1) ;

var a e l = document . createElement (’ a ’) ;
a e l . h r e f = ”http :// foo . org ” ;

var a s t y l e = document . de faultView .\
getComputedStyle (a e l , ””) ;

i f (a s t y l e . getPropertyValue (” c o l o r ”)
== ’ red ’) { // l i n k was v i s i t e d }

</s c r i p t >

Figure 2: Basic JavaScript Implementation.

Table 1: Detectable Protocols by Browser.
IE Firefox Safari Chrome Opera

http X X X X X
https X X X X X
ftp X X X X X
file X X X X

the development of the original CSS standard[19]. The get-

ComputedStyle method is often used for determining the size
and dynamic resizing of HTML containers and is crucial cor-
rectly laying out a large number of websites. Therefore, any
changes to those mechanisms are likely to result in problems
for a portion of the Web[12], or potentially introduce acces-
sibility issues by violating W3C accessibility guidelines[22].
Browser vendors attempting to mitigate against history de-
tection attacks will thus need to justify such changes by
explaining the privacy issues associated with styling visited
links to both users and Web developers.

3.2 Resource Detectability
CSS history detection has historically been applied al-

most exclusively to detect domain-level resources (such as
http://example.org), retrieved using the HTTP protocol (a
notable recent exception is [14] which is based on the de-
tailed enumeration of visited resources within each domain
to deanonymize social network users). However, Web browsers
apply the visited style to various kinds of visited links, in-
cluding sub-domain resources such as images, stylesheets,
scripts and URLs with local anchors, if they were visited
directly by the user. In general, and with few exceptions,
there exists a close correspondence between the URLs which
appeared in the browser’s address bar and those the browser
considers to be visited. Thus, visited URLs within protocols
other than HTTP, including https, ftp, and file can also
be queried in most browsers, as shown in Table 1.

Because of the address bar rule outlined above, param-
eters in forms submitted with the HTTP POST request
method cannot be detected using the described technique,
whereas parameters from forms submitted using HTTP GET
can. The URLs for resources downloaded indirectly, such
as images embedded within an HTML document, are usu-

Table 2: Detectability of frame and iframe URLs.
IE Firefox Safari Chrome Opera

frames X X
iframes X X

Table 3: Detectability by HTTP status codes.
IE Firefox Safari Chrome Opera

200 X X X X X
301 n/a both original both both
302 n/a both original both both
4xx X X X X
5xx X X X X
meta n/a X X X X

ally not marked as visited. However, one exception is the
handling of frames and iframes in some browsers. A URL
opened in a frame or iframe does not appear in the address
bar, but some browsers, including Firefox and Chrome, still
consider it to be visited, as shown in Table 2.

While all major browsers behave as expected when down-
loading valid resources (ones returning HTTP 200 status
codes), variations exist for other response types. When en-
countering an HTTP redirect code (status 301 or 302) Fire-
fox, Chrome and Opera mark both the redirecting URL and
the new URL specified in the Location HTTP header as
visited, whereas Safari saves only the original URL, and In-
ternet Explorer exhibits seemingly random behavior. When
retrieving an invalid URL (status codes 4xx and 5xx), all
browsers except Internet Explorer mark the link as visited.
The handling of various types of HTTP responses is sum-
marized in Table 3.

The ability to detect links visited by any user depends
on the existence of those links in the browser’s history store
and is affected by history expiration policies. This default
value for history preservation varies between browsers, with
Firefox storing history for 90 days, Safari - 20 days, IE -
20 days. Opera stores 1000 most recently visited URLs,
whereas Chrome does not expire browsing history.

It is important to note that a potential adversary whose
website is periodically visited by the user (or whose script is
included on such a site) can query the history state repeat-
edly on each visit, maintaining a server-side list of detected
links.

3.3 Performance
CSS-based browsing history detection has become a pop-

ular technique for various privacy-related attacks because of
its simplicity and the ability to quickly check for a large num-
ber of visited resources. Compared to other easily realizable
attacks, such as the ones described in [13], the main advan-
tage is that this approach is non-destructive (does not alter
the browser’s history state), and its speed. In order to fully
understand the implications of CSS-based history detection
attacks, it is thus crucial to learn about its performance
characteristics using optimized scripts for each browsing en-
vironment.

3.3.1 Optimizing JavaScript detection
To date, little effort has been put into researching effi-

cient implementations of JavaScript-based history detection.

Several existing implementations use DOM a elements in a
static HTML document to hold URLs which are later in-
spected to determine if the CSS visited rule applied to the
corresponding URL, an approach significantly slower than
a fully-dynamic technique. Additionally, due to browser in-
consistencies in their internal representations of computed
CSS values (e.g. the color red can be internally represented
as “red”, “#ff0000”, “#f00”, or “rgb(255, 0, 0)“) most de-
tection scripts try to achieve interoperability by checking
for a match among multiple of the listed values, even if the
client’s browser consistently uses one representation. An-
other difference affecting only certain browsers is that an
a element must be appended to an existing descendant of
the document node in order for the style to be recomputed,
increasing script execution time.

For our detection code, we took the approach of creating
an optimized technique for each major browser and falling
back to a slower general detection method for all other browsers.
We then compared the execution time of the optimized test
with the general method for each major browser. The dif-
ferences in execution times are shown in Figure 3.

For each browser the implementation varies slightly, de-
pending on the way CSS properties are represented inter-
nally and the available DOM mechanisms to detect element
styles. The entirety of the general detection algorithm is as
follows:

1. Initialize visited and unvisited styles, and URLs to
check in a JavaScript array.

2. Detect browser and choose detection function.

3. Invoke chosen detection function on URL array.

• Create <a> element and other required elements.

• For each URL in array:

– Set <a> element href attribute to URL.

– (for some browsers) Append element to DOM
or recompute styles.

– If computed style matches visited style, add
URL to “visited” array.

4. Send contents of visited array to server or store on the
client-side.

Our approach has the advantage of avoiding a function
call for each check, reusing DOM elements where possible,
and is more amenable to optimization by JavaScript engines
due to a tight inner loop. Compared to a naive detection
approach using static <a> elements in the HTML source
and less-optimized style matching, our technique is up to 6
times faster, as depicted in Figure 3.

3.3.2 CSS Performance
The CSS-only detection technique, while less flexible and

difficult to optimize, is also a valuable alternative to the
scripting detection approach, as it allows to test clients with
JavaScript disabled or ones with security-enhancing plug-
ins such as NoScript. Our results, provided in Figure 4,
show that CSS-based detection can perform on par with the
scripting approach for small data sets of 50,000 links and
fewer. An important drawback, however, is that CSS-based
detection requires <a> elements with appropriate href at-
tributes to be included in the static HTML source, increas-
ing the page size and required bandwidth. Additionally,

 0

 5000

 10000

 15000

 20000

 25000

 30000

IE FF Safari Chrome Opera

S
ca

nn
ed

 li
nk

s/
se

co
nd

JavaScript Performance

Optimized
General

Figure 3: JavaScript detection performance

 0

 10000

 20000

 30000

 40000

 50000

IE FF Safari Chrome Opera

S
ca

nn
ed

 li
nk

s/
se

co
nd

CSS Performance

50k elements
75k elements

100k elements

Figure 4: CSS detection performance.

for more sizable link sets (HTML pages with over 50,000
elements), detection performance (and overall browser per-
formance) decreases quickly due to a large number of DOM
elements included in the page.

3.3.3 Network considerations
While client-side detection efficiency is of the most impor-

tance, we observe that the overall goal of detecting visited
URLs in the client’s browsing history can require significant
network resources. Since many browsers on modern hard-
ware are able to check tens of thousands of links per second,
the bandwidth necessary to sustain constant checking speed
becomes non-trivial.

In our test data set, the median URL length for a host-
name is 24 bytes, and for an internal (secondary) resource is
60 bytes. The overhead of including a URL in a JavaScript
script in our implementation was 3 bytes (for quoting and
separating array elements). For CSS, the average size over-
head was 80 bytes due to the necessity of adding HTML
markup and static CSS styles. In our tests, transmitting
30,000 thousand URLs required approximately 1650 KB (170
KB with gzip compression) for JavaScript, and 3552 KB
(337KB with gzip compression) for CSS tests.

For an average broadband user, available bandwidth could
potentially be a limiting factor, especially for owners of mod-
ern systems which can execute the detection code faster. To

decrease the required bandwidth, transmitted links can omit
common patterns (e.g. http:// or http://www.);, enumer-
ating resources within a single domain can also significantly
reduce the required network bandwidth by only transmitting
the variable enumerated component.

4. METHODOLOGY
A core goal of our work was to build a functional system

to demonstrate the possible privacy risks associated with
browser history detection, including the development of cat-
egorized tests detecting various classes of online resources.
As such, our testing system was designed to maximize the
number of potentially private URLs retrieved from each vis-
itor’s history and to present visitors with a visual represen-
tation of what can be inferred about their browsing habits.

4.1 System Overview
Our testing web application was divided into multiple test

categories, each of which contained several history detection
tests. Test categories included:

• General tests of popular websites,

• Websites with sensitive content (e.g. Wikileaks article
pages and visited adult websites),

• On-line news and social news websites along with story
links posted on such sites, and

• A final category of miscellaneous tests (including a
zipcode detection test and a check of search engine
queries).

The default test which executed when a user visited the
site homepage was the top5k test, checking for 6,417 most
popular Internet locations. Selected tests are listed in Table
4.

When a user visited a test page, she was presented with
a short test description, along with a list of primary links
to check. When the page loaded, the browser automatically
performed checks of all links in the list, continuously updat-
ing a progress bar to inform the user about the test status.
When all links were checked, the browser submitted the re-
sults to the server using an AJAX request, and received in
response the thumbnail images and descriptions for all web-
sites for which primary links were found, as well as a list
of secondary links for each such website. The browser then
checked all links in the secondary list and submitted the
results to the server. The final server reply contained an
overview of the data found in the user’s history, along with
a detailed list of all primary and secondary links found.

For some tests, the set of secondary links was accompa-
nied by a list of enumeration elements such as usernames
on a visited social news site (Digg, Reddit or Slashdot),
popular search engine queries for the search query test, or
US zipcodes for the zip code detector test. Enumeration
elements were appended to one or more base URLs sup-
plied by the server (such as http://reddit.com/user/) and
were checked similarly to primary and secondary links. This
mechanism added a semantic component to the test by in-
forming the server about the type of the link found in the
user’s history (e.g. username or search term), as contrasted
with a “generic” link. It also helped the system conserve
network bandwidth, by omitting common URL prefixes for
similar links.

If a user visited any test page with JavaScript disabled,
the server automatically recognized that fact and redirected
the client to a separate test page which utilized the CSS-only
method described in Section 3.1. The CSS-only test required
more network resources, but tested for the same primary
and secondary links as the regular test and presented results
in the same manner. An overview of differences between
results gathered from clients with and without JavaScript is
provided in Table 5.

4.2 Link Selection
The selection of URLs to check for in each client’s history

is of paramount importance in any project utilizing CSS-
based history detection as it determines how much browsing
data can be gathered. However, if too much data is trans-
ferred to the user, both the page load and test run times
might increase to the point that the user will leave the page
without completing the test. Large data sets also limit the
number of concurrent client a testing server can support due
to server-side network and computational limitations. In our
system we tackled this problem by both splitting tests into
domain-specific categories, and dividing our tests into two
phases for checking primary and secondary links.

4.2.1 Primary Links
For each test we gathered primary links representing do-

mains of websites which contained resources of interest for
the particular test. For the general test category we used
popular Web analytics services including Alexa, Quantcast
and Bloglines to identify the most popular Internet loca-
tions. For other tests, such as the social network, bank or
government/military site tests, we compiled extensive lists of
sites within each category by combining several available on-
line lists and manually verifying their accuracy. There was
a many-to-many mapping between primary links and tests;
each test was composed of thousands of primary links, and
some links were checked in multiple tests - a popular on-line
store such as Amazon.com was checked in the popular site
tests (top5k, top20k) as well as the domain-specific online
store test.

We retrieved the HTML source for each primary link and
if any HTTP redirects occured, we kept track of the new
URLs and added them as alternate links for each URL (for
example if http://example.org redirected to http://example.

org/home.asp both URLs would be stored). We also per-
formed basic unifications if two primary links pointed to
slightly different domains but appeared to be the same entity
(such as http://example.org and http://www.example.org).

A total of 72,134 primary links were added to our sys-
tem, as shown in Table 4. To each primary link we added
metadata, including the website title and a human-readable
comment describing the nature of the site, if available. Pri-
mary links served as a starting point for resource detection
in each test—if a primary link (or one of its alternate forms)
was detected in the client’s history, secondary links asso-
ciated with that primary link were sent to the client and
checked.

4.2.2 Secondary Links
As discussed in Section 3, browser history detection has

the potential for detecting a variety of Web-based resources
in addition to just the hostname or domain name of a ser-

Table 4: Test link counts.
Primary links Secondary links

top5k 6417 1416709
top20k 23797 4054165
All 72134 8598055
Adult 6732 331051

vice. In our tests, for each primary link we gathered a large
number of secondary links for resources (subpages, forms,
directly accessible images, etc.) within the domain repre-
sented by the primary link. The resources were gathered
using several techniques to maximize the coverage of the
most popular resources within each site:

1. Search engine results. We utilized the Yahoo! BOSS[10]
search engine API and queried for all resources within
the domain of the primary link. For each such link we
gathered between 100 and 500 resources.

2. HTML inspection. We retrieved the HTML source for
each primary link and made a list of absolute links to
resources within the domain of the primary link. The
number of secondary links gathered using this method
varied depending on the organization of each site.

3. Automatic generation. For some websites with known
URL schemes we generated secondary links from list
pages containing article or website section names.

We then aggregated the secondary links retrieved with
each method, removing duplicates or dubious URLs (includ-
ing ones with unique identifiers which would be unlikely to
be found in any user’s history) and added metadata such as
link descriptions where available.

For news site tests we also gathered links from the RSS
feeds of 80 most popular news sites, updated every two
hours3. Each RSS feed was tied to a primary link (e.g. the
http://rss.cnn.com/rss/cnn_topstories.rss was associ-
ated with the http://cnn.com primary link). Due to the
high volume of links in some RSS feeds, several news sites
contained tens of thousands of secondary links.

4.2.3 Resource enumeration
In addition to secondary links, several primary links were

also associated with enumeration elements, corresponding
to site-specific resources which might exist in the browser’s
cache, such as usernames on social news sites, popular search
engine queries, or zipcodes typed into online forms. To
demonstrate the possibility of deanonymizing users of so-
cial news sites such as Digg, Reddit or Slashdot we gathered
lists of active users on those sites by inspecting comment
authors, and checked for profile pages of such users in the
clients cache. Enumeration elements were particularly use-
ful for tests where the same element might be visited (or
input) by the user on several sites – in our search engine
query test, the URLs corresponding to searches for popular
phrases were checked on several major search engines with-
out needing to transmit individual links multiple times.

3Due to high interest in our testing application and asso-
ciated resource constraints, we were forced to disable auto-
matic updating of RSS feeds for parts of the duration of our
experiment

4.3 Submitting and Processing Results
For each visiting client, our testing system recorded in-

formation about the links found in the client’s history, as
well as metadata including test type, time of execution, the
User Agent header, and whether the client had JavaScript
enabled. Detected primary links were logged immediately
after the client submitted first stage results and queried the
server for secondary links. After all secondary links were
checked, the second stage of detection data was submitted
to the test server. All detected information was immediately
displayed to the user.

5. RESULTS
The testing system based on this work was put into op-

eration in early September 2009 and is currently available
at [8]. Results analyzed here span the period of September
2009 to February 2010 and encompass data gathered from
271,576 users who executed of total of 703,895 tests (an av-
erage of 2.59 tests per user). The default top5k test, check-
ing for 6,417 most popular Internet locations and 1,416,709
secondary URLs within those properties was executed by
243,068 users4.

5.1 General Results
To assess the overall impact of CSS-based history detec-

tion it is important to determine the number of users whose
browser configuration makes them vulnerable to the attack.
Table 5 summarizes the number of users for whom the top5k
test found at least one link, and who are therefore vulnera-
ble. We found that we could inspect browsing history in the
vast majority of cases (76.1% connecting clients), indicating
that millions of Internet users are indeed susceptible to the
attack.

For users with at least one detected link tested with the
JavaScript technique we detected an average of 12.7 websites
(8 median) in the top5k list, as well as 49.9 (17 median)
secondary resources. Users who executed the more-extensive
JavaScript top20k test, were detected to have visited an
average of 13.6 (7) pages with 48.2 (15) secondary resources.
Similar results were returned for clients who executed the
most elaborate all test, with 15.3 (7) primary links and
49.1 (14) secondary links. The distribution of top5k results
for JavaScript-enabled browsers is shown in Table 5. An
important observation is that for a significant number of
users (9.5%) our tests found more than 30 visited primary
links; such clients are more vulnerable to deanonymization
attacks and enumeration of user-specific preferences.

Due to the fact that our testing site transparently reverted
to CSS-only tests for clients with scripting disabled, we are
also able to measure the relative differences in data gathered
from clients with JavaScript disabled or unavailable. A total
of 8,165 such clients executed the top5k test; results were
found for 76.9% of clients, with a median of 5 visited primary
URLs and 9 secondary URLs. Results for the top20k test
executed in CSS yielded results similar to JavaScript clients,
with 15.1 (8) websites and 51.0 (13) secondary links.

Interestingly, it seems that for certain tests, users with-
out JavaScript reported significantly more detected web-

4The testing system was reviewed on several social news
sites and high-readership blogs, which increased the number
of users who visited our website and helped in the overall
data acquisition.

Table 5: Aggregate results for most popular tests
JS # CSS Found pri (JS) Found pri (CSS) pri/user (JS) pri/user (CSS) sec/user (JS) sec/user (CSS)

top5k 206437 8165 76.1% 76.9% 12.7 9.8 49.9 34.6
top20k 31151 1263 75.4% 87.3% 13.6 15.1 48.1 51.0
All 32158 1325 69.7% 80.6% 15.3 20.0 49.1 61.2
Adult 51311 1288 19.9% 49.6% 3.9 3.8 6.5 6.0

Figure 5: Cumulative distribution of top5k results
for primary links.

Table 6: News test results.
Average secondary Median secondary

All news 45.0 7
Digg 51.8 7
Reddit 163.3 26
Slashdot 15.2 3

sites, such as in the adult website test where we detected
relevant links in histories of 49.6% non-JavaScript users com-
pared to only 20% of JavaScript users. This result should be
an important consideration for organizations which decide
to disable scripting for their employees for security reasons,
as it demonstrates that such an approach does not make
them any more secure against history detection attacks and
associated privacy loss.

5.2 News Site Links
An important overall part of our test system were tests of

visited links from social news sites. We investigated three
popular social news sites: Digg, Reddit and Slashdot. For
each site, in addition to secondary links representing popu-
lar pages within that website, we also gathered all links to
external destinations from the site’s main RSS feed. We also
checked for visits to the profile pages of active users within
each site using the enumeration strategy outlined in Section
4.2.3.

We found that for users whose browsing history contained
the link of the tested social news site, we could, in a signifi-
cant majority of cases, detect resources linked from that site.
Additionally, for 2.4% of Reddit users we found that they

Figure 6: Cumulative distribution of Wikileaks re-
sults for secondary links.

visited the profile of at least one user of their social news
site. Such data demonstrates that it is possible to perform
large-scale information gathering about the existence of re-
lationships between social news site users, and potentially
deanonymize users who visit their own profile pages.

The final news website test was the “All recent news” test
which inspected the user’s browsing history for 32 popular
online news sites, along with links to stories gathered from
their RSS feeds. For users who visited at least one such site,
we found that the median of visited news story links was 7.
For a significant number of users (2.9%) we detected over
100 news story links.

It is important to note that the specified architecture can
potentially be used to determine user-specific preferences.
Inspecting detected secondary links can allow a determined
attacker to not only evaluate the relationship of a user with
a particular news site, but also make guesses about the type
of content of interest to the particular user.

5.3 Uncovering Private Information
For most history tests our approach was to show users the

breadth of information about websites they visit which can
be gleaned for their browsing history. However, we also cre-
ated several tests which used the resource enumeration ap-
proach to detect common user inputs to popular web forms.

The zipcode test detected if the user typed in a valid US
zipcode into a form on sites requiring zipcode information
(there are several sites which ask the user to provide a zip-
code to get information about local weather or movie show-
times). Our analysis shows that using this technique we
could detect the US zipcode for as many as 9.2% users ex-
ecuting this test. As our test only covered several hand-
picked websites, it is conceivable that with a larger selection

of websites requiring zip codes, the attack could be easily
improved to yield a higher success rate.

In a similar test of queries typed into the Web forms of
two popular search engines (Google and Bing) we found that
it is feasible to detect some user inputs. While the num-
ber of users for whom search terms were detected was small
(about 0.2% of users), the set of terms our test queried for
was small (less than 10,000 phrases); we believe that in cer-
tain targeted attack scenarios it is possible to perform more
comprehensive search term detection.

Additionally, we performed an analysis of detected sec-
ondary links on Wikileaks—a website with hundreds of potan-
tially sensitive documents, in order to evaluate the feasibility
of detecting Wikileaks users from a large body of our site
visitors. We found that we could identify multiple users who
had visited the Wikileaks site, some of whom had accessed
a large number of documents, as presented in Figure 6.

While limited in scope due to resource limitations, our re-
sults indicate that history detection can be practically used
to uncover private, user-supplied information from certain
Web forms for a considerable number of Internet users and
can lead to targeted attacks against the users of particular
websites.

6. CONCLUSIONS
This paper describes novel work on analyzing CSS-based

history detection techniques and their impact on Internet
users. History detection is a consequence of an established
and ubiquitous W3C standard and has become a common
tool employed in privacy research; as such, it has important
implications for the privacy of Internet users. Full under-
standing of the implementation, performance, and browser
handling of history detection methods is thus of high impor-
tance to the security community.

We described a basic cross-browser implementation of his-
tory detection in both CSS and JavaScript and analyzed
Web browser behavior for content returned with various
HTTP response codes and as frames or iframes. We pro-
vided an algorithm for efficient examination of large link sets
and evaluated its performance in modern browsers. Com-
pared to existing methods our approach is up to 6 times
faster, and is able to detect up to 30,000 links per second in
recent browsers on modern consumer-grade hardware. We
also provided and analyzed results from our existing testing
system, gathered from total number 271,576 of users. Our
results indicate that at least 76% of Internet users are vul-
nerable to history detection; for a simple test of the most
popular websites, we found, on average 62 visited URLs.

Our final contribution is the pioneering the data acqui-
sition of history-based user preferences. Our analysis not
only shows that it is feasible to recover such data, but, pro-
vided that it is large-scale enough, enables enumeration of
privacy-relevant resources from users’ browsing history. To
our knowledge, this was the first such attempt. Our results
prove that CSS-based history detection does work in prac-
tice on a large scale, can be realized with minimal resources,
and is of great practical significance.

7. REFERENCES
[1] Bug 57351 - css on a:visited can load an image and/or

reveal if visitor been to a site. https:
//bugzilla.mozilla.org/show_bug.cgi?id=57531.

[2] Cascading style sheets, level 1.
http://www.w3.org/TR/REC-CSS1/.

[3] Cascading style sheets level 2 revision 1 (css 2.1)
specification, selectors. http://www.w3.org/TR/CSS2/
selector.html#link-pseudo-classes.

[4] Change the color of visited links.
http://www.useit.com/alertbox/20040503.html.

[5] Quantcast. http://www.quantcast.com/.

[6] Stanford safehistory. http://safehistory.com/.

[7] Webcollage. http://www.webcollage.com/.

[8] What the internet knows about you.
http://www.wtikay.com/.

[9] What they know. http://whattheyknow.cs.wpi.edu/.

[10] Yahoo! boss.
http://developer.yahoo.com/search/boss/.

[11] Bug 147777 - :visited support allows queries into
global history. https:
//bugzilla.mozilla.org/show_bug.cgi?id=147777,
2002.

[12] L. D. Baron. Preventing attacks on a user’s history
through css :visited selectors.
http://dbaron.org/mozilla/visited-privacy, 2010.

[13] E. W. Felten and M. A. Schneider. Timing attacks on
web privacy. In CCS ’00: Proceedings of the 7th ACM
conference on Computer and communications security,
pages 25–32, New York, NY, USA, 2000. ACM.

[14] E. K. C. K. Gilbert Wondracek, Thorsten Holz. A
practical attack to de-anonymize social network users,
ieee security and privacy. In IEEE Security and
Privacy, Oakland, CA, USA, 2010.

[15] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell.
Protecting browser state from web privacy attacks. In
WWW ’06: Proceedings of the 15th international
conference on World Wide Web, pages 737–744, New
York, NY, USA, 2006. ACM.

[16] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and
F. Menczer. Social phishing. Commun. ACM,
50(10):94–100, 2007.

[17] M. Jakobsson and S. Stamm. Web camouflage:
Protecting your clients from browser-sniffing attacks.
IEEE Security and Privacy, 5:16–24, 2007.

[18] F. König. The art of wwwar: Web browsers as
universal platforms for attacks on privacy, network
security and arbitrary targets. Technical report, 2008.

[19] H. W. Lie. Cascading style sheets.
http://people.opera.com/howcome/2006/phd/, 2005.

[20] A. J. M. Jakobsson and J. Ratkiewicz.
Privacy-preserving history mining for web browsers. In
Web 2.0 Security and Privacy, 2008.

[21] T. N. J. Markus Jakobsson and S. Stamm. Phishing
for clues. http://browser-recon.info/.

[22] W3C. Web content accessibility guidelines 1.0.
http://www.w3.org/TR/WAI-WEBCONTENT/#gl-color,
1999.

[23] M. Zalewski. Browser security handbook, part 2.
http://code.google.com/p/browsersec/wiki/Part2,
2009.

