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Abstract—Booting is hard. Booting in the ARM world is even
harder. State of the art are a dozen different boot loaders that
may  or  may  not  deserve  that  name.  Each  gets  configured
differently  and  each  has  its  own pros  and  cons.  For a  Linux
distribution this is a nightmare. Configuring each and every one
of them complicates code that really should be very simple. To
solve the problem, one can just add another layer of abstraction
(GRUB2) on top of another layer of abstraction (UEFI) on top of
another layer of abstraction (U-Boot). Learn how all those layers
can make life easier for the distribution and how much fun UEFI
really is. Read how ARM systems boot, what UEFI really means,
how UEFI binaries  interact  with  firmware,  how openSUSE is
going  to  move  to  UEFI  based  boot  on  ARM  and  how  UEFI
enables convergence of the Enterprise and Embedded markets.

Keywords—UEFI; U-Boot; GRUB; Linux; openSUSE; ARM;
ARMv8; AArch64

I. INTRODUCTION

Almost  as  diverse  as  ARM  based  chips  are  the  boot
mechanisms  encountered  on  them  by  software  developers.
A common way to handle such variance is abstraction layers.

Section  II compares boot mechanisms and explains some
software  abstractions.  Section  III gives  a  quick overview of
UEFI, section  IV presents a novel UEFI implementation and
section V concludes with a status summary.

II. BOOT FLOW ON INTEL VS. ARM

In Intel based PC, server and embedded markets, the Basic
Input/Output  System  (BIOS)  [3] and  in  recent  years  the
Unified  Extensible  Firmware  Interface  (UEFI)  [1] offer  a
standardized boot flow for developers of operating systems and
appliances:  Independent  of  processor model  and vendor and
board model and vendor, BIOS implementations may load and
execute boot code from the first 424 bytes on the boot medium,
using  a  Master  Boot  Record  (MBR).  Similarly  UEFI
implementations may load and execute a certain file from a
certain  GUID  Partition  Table  (GPT)  partition  on  the  boot
medium.  Because  BIOS  and  UEFI  are  two  alternative  boot
environments, the GRUB bootloader [4] offers another level of

abstraction to operating systems in how alternative kernels and
their configuration are stored.

SUSE as one Linux vendor have gone one step further with
their SUSE Linux Enterprise Server 12 family of products [5]
and standardize on GRUB not just for the 64-bit Intel/AMD
instruction set architecture but also for Power Architecture and
IBM zSystems mainframes ([6] section 8.4.8.9 “GRUB2 Is the
Supported Bootloader”).

Such  abstractions,  at  the  cost  of  a  little  boot  time  and
storage space, add value through software specialization and
through  choice  of  software  offerings,  ultimately  benefiting
customers and users.

By contrast, ARM based System-on-Chip (SoC) platforms
pose much more variance despite their compatible instruction
set architecture. While for the 64-bit ARM server market the
Server Base System Architecture (SBSA) [7] and Server Base
Boot  Requirements  (SBBR)  [8] specifications  have  led  to
adoption  of  UEFI,  it  has  received  little  interest  in  the
Embedded  and  Mobile  markets  so  far.  Therefore  on  many
ARM based platforms, system developers still need to deploy a
highly hardware-specific firmware image rather than a generic
operating system image.  The SoC may be  designed  to  load
code from an offset in flash (e.g., NAND, SPI, eMMC, SD), or
from a file in a certain partition, or via serial or USB protocols.
For example, the Raspberry Pi single-board computer (with a
Broadcom BCM2835 SoC) loads a file bootcode.bin1 from the
first FAT16 partition in an MBR; the Qualcomm Snapdragon
family of SoCs load code from a certain GPT partition;  the
NXP i.MX 6 family of SoCs load code from a 1024 byte offset;
the Marvell Armada 380 family of SoCs load code from offset
512; the 32-bit Allwinner SoCs load code from offset 8192; etc.
Since many of these locations are mutually exclusive to each
other as well  as to UEFI,  it  is  impossible to create a single
unified boot medium that boots on all of them. Additionally,
parts of the boot code need to be specific to the SoC and board
or board family, while SRAM and other size constraints rule
out a monolithic boot code implementation.

1 bootcode.bin is actually not ARM but VideoCore IV code, but
that does not matter from a software deployment perspective.

www.embedded-world.eu



This has resulted in two trends within the Linux ecosystem:

1)  Hardware  vendors  created  their  own  forked  Linux
distributions, such as Raspbian for the Raspberry Pi, Bananian
for the Banana Pi, OrangeOS for the Orange Pi, Parabuntu for
the  Parallella,  Udoobuntu  for  Udoo,  TurrisOS  for  Turris
Omnia, etc. Thereby for a new SoC (and board) users would
initially be bound to the vendor's software offering, both for
availability of software and for boot know-how.

2)  Linux  distributions  needed  to  create  board-specific
installation images, such as various openSUSE JeOS images or
the SUSE Linux Enterprise Server  12 SP2 for Raspberry Pi
product  [12].  This  poses  Quality  Assurance  challenges  in
particular for a rolling-release distribution like Tumbleweed.

For the SUSE Linux Enterprise Server 12 SP2 for ARM
product,  shipping  any  SoC-specific  media,  bootloaders  or
Device Trees was not a scalable solution. Yet at the same time
restricting  the  product  to  SBBR-compliant  hardware  was
undesirable for the SUSE Embedded business.

This left two solutions for SUSE partners:

a)  Implement  a  UEFI compliant  firmware  for  SoCs  and
reference  boards.  The  UEFI  compliant  firmware  then  loads
SUSE's GRUB from installation or storage medium – GRUB
then loads the Linux kernel from filesystem or network. Within
Linux, existing tools like yast-bootloader and grub2-mkconfig
can update the GRUB configuration for the next boot.

b)  Continue using custom bootloaders,  losing Enterprise-
class functionality like BTRFS snapshot boot and a convenient
installation method. The bootloader must then be able to load
the kernel from BTRFS, XFS and Ext4 volumes itself, and the
kernel command line would need to be maintained differently
for  each  bootloader.  Also,  Device  Trees  would  need  to  get
delivered by the operating system rather than by firmware.

In practice, option a) so far meant the vendor either has to
buy  AMI Aptio  [14] or  to  fork  and  maintain  Tianocore
EDK2 [15] as alternative bootloader.

For option b) only very recent versions of U-Boot [2] have
sufficient Ext4 filesystem support; and as of v2017.01 it has
neither  XFS  nor  BTRFS  support  yet,2 forcing  the  use  of  a
separate Ext4 formatted /boot partition in that case.

The broad and scalable ARM SoC support in U-Boot led to
the idea of implementing a UEFI compliant boot command in
U-Boot, to combine the best of both worlds.

III. UNIFIED EXTENSIBLE FIRMWARE INTERFACE

Conceptually UEFI  [1] provides its applications with two
types  of  services,  Boot  Services and  Runtime  Services
([1] sections 6 and 7). GRUB [4] will consume Boot Services
and  Runtime  Services,  whereas  Linux [10] consumes  Boot
Services  only during early start  and may consume Runtime
Services  only  while  it  is  actively  running.3 Additionally  it
provides Configuration Tables ([1] section 4.6).

2 Turris Omnia carries a patch for BTRFS support.
3 The Linux command line option  efi=noruntime suppresses use

of Runtime Services.

UEFI is often confused with the Advanced Configuration
and Power Interface (ACPI)  [9]. Since September 2013 both
specifications are published by Unified EFI Inc. and both are
mandated  in  the  ARM  SBBR  [8],  but  UEFI  can  be  used
without ACPI.

An EFI application is passed a pointer to a  System Table
([1] section  4).  The  System  Table  provides  among  others
access  to  function callbacks for  Boot  Services  and  Runtime
Services as well as a list of the Configuration Tables.

Configuration Tables are identified by a Globally Unique
Identifier (GUID), allowing vendors to add tables not defined
in the UEFI specification. One such Configuration Table GUID
is defined by Linux for the Flat Device Tree (FDT), i. e. by
default Linux will search for a Configuration Table with the
FDT GUID and use its contents to initialize device drivers, and
only when this is absent or when acpi=force is used will Linux
search for a Configuration Table with an ACPI GUID.

Boot Services include callbacks for memory management,
timers,  device  discovery  (e. g.,  storage,  network,  console,
framebuffer) and vendor extensions, as well as for “exiting” the
Boot Services, after which they may no longer be used by the
application.

Runtime Services include callbacks for managing time and
variables, as well as for system reset. These callbacks remain
available even after Boot Services have been discarded.

IV. IMPLEMENTING UEFI IN U-BOOT

Das  U-Boot  is  a  bootloader  under  GNU General  Public
License with an active community and wide adoption in the
Embedded  ARM  market.  It  offers  an  interactive  shell  with
among others boot commands such as bootm, bootz and booti,
and a distro framework for non-interactive booting of Linux.

This  distro framework  specifically  allows  to  execute  a
boot.scr script file from a partition on a boot medium. This has
been used for openSUSE images and is supported in the  kiwi
appliance tool, but the file and the command line arguments
therein are not updated by  yast2-bootloader,  so that the user
has to manually maintain the script file with mkimage. Kernel
version updates are handled by symlinking to the latest kernel,
initrd and the dtb directory – if an updated kernel fails to boot,
either  the  user  needs  to  manually  enter  boot  commands  or
tweak the symlinks on the boot medium.

The  distro framework further allows to load a config file
extlinux/extlinux.conf that can list multiple kernels that the user
can then select from. This comes close to GRUB functionality,
but openSUSE does not support the generation of this config
file that differs in location and syntax from grub.cfg.

GRUB actually has an arm-uboot backend for 32-bit ARM.
There  are  two  problems  with  this,  apart  from  not  being
implemented  for  arm64:  1)  GRUB  hardcodes  the  physical
address of RAM, making the binary somewhat SoC-specific. 2)
It  relies  on  an  optional  API  feature  of  U-Boot,  which  is
disabled by default, therefore not build-tested for most targets
and  appeared  to  be  in  poor  shape.  A UEFI  implementation
could  leverage  U-Boot  drivers,  while  allowing  to  boot  a
generic GRUB binary.
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For some boards the distro framework had to be enabled.

The new configuration options CONFIG_EFI_LOADER=y
and  CONFIG_CMD_BOOTEFI=y are enabled by default for
ARM and  x86 targets.  The  latter  makes  available  a  bootefi
command  that  similar  to  other  boot  commands  accepts  the
address  of  a  previously  loaded  binary  (e. g.,  GRUB)  and
optionally the address to use for the FDT Configuration Table.

The distro framework has been extended to scan partitions
for EFI/BOOT/BOOTARM.EFI or EFI/BOOT/BOOTAA64.EFI
files, as well as for the board-specific .dtb file, and to invoke
bootefi for them. If no matching .dtb file is found, it may fall
back to reusing the internal Device Tree used by U-Boot itself.

For implementing, e.g., reset Runtime Services, care has to
be taken to annotate any code and data used in the callback
implementation so that they do not get unmapped when Boot
Services are exited.

The  UEFI  implementation  resulted  in  discovery  of  and
fixes for generic cache handling issues [16]. Due to EFI Boot
Services  implementing their  own memory management  API,
and  GRUB implementing  yet  another  memory  management
layer based on that, memory reservations had to be added for a
few SoCs that previously went undiscovered.

All callbacks for UEFI 2.5 compliance are provided, but
not all are implemented. For example,  time functions would
require real-time clock drivers in U-Boot and would require
them to be designed to work as Runtime Services.  And EFI
variables  can't  safely access  the  same eMMC or  SD device
Linux drivers are using. For that reason U-Boot cannot provide
a random seed as EFI variable to Linux, resulting in a warning
in recent kernels that can be ignored.

V. SUMMARY AND OUTLOOK

As of U-Boot v2017.01, booting Linux kernels via GRUB
is known to be working on the following SoCs (boards):

• Allwinner A64 (Pine64)

• Altera Cyclone V (DE0-Nano-SoC)

• Amlogic S905 (Odroid-C2)

• Broadcom BCM2835/2836/2837 (Raspberry Pi 1/2/3)

• HiSilicon Kirin 620 (HiKey)

• Marvell Armada 388 (ClearFog)

• Nvidia Tegra K1 (Jetson TK1)

• NXP i.MX 6SoloX (Udoo Neo)

• NXP QorIQ LS2085A (LS2085ARDB)

• Rockchip RK3288 (Firefly-RK3288)

• Texas Instruments Sitara AM3358 (Beagle Bone)

• Xilinx Zynq UltraScale+ MPSoC (ZCU102)

Many  openSUSE  JeOS  images  that  were  using  U-Boot
before have been updated to gain a separate EFI FAT partition

/boot/efi alongside an optional  /boot partition and the  / root
partition. U-Boot then detects GRUB on the first partition and
invokes bootefi for it. An openSUSE specific U-Boot patch lets
it search for the Device Tree on the second rather than current
partition,  since  openSUSE  dtb  packages  install  to  /boot/dtb
rather than to EFI-specific  /boot/efi/dtb, which on FAT would
not allow symlinks either.

For  example,  the  openSUSE  JeOS-raspberrypi3.aarch64
image on an  SD card  will  result  in  the  boot  ROM loading
bootcode.bin from the first partition, in turn loading u-boot.bin
from that partition; U-Boot loads  EFI/BOOT/BOOTAA64.EFI
from there, as well as  dtb/broadcom/bcm2837-rpi-3-b.dtb if it
exists on the following Ext4 partition, using U-Boot's SDHCI,
partition and filesystem drivers; GRUB then loads, e.g., Image-
4.9.0-1-default and  initrd-4.9.0-1-default via  EFI  Boot
Services,  indirectly  using  the  SDHCI  driver  of  U-Boot  but
using partition and filesystem drivers of GRUB; finally Linux
gets the Device Tree indirectly through the FDT Configuration
Table, uses EFI Boot Services for initial output, loads its own
drivers and exits EFI Boot Services.  When the user reboots,
Linux  calls  into  EFI  Runtime  Services,  where  the  tiny
remaining part of U-Boot performs the hardware reset.

But that is a rather traditional example that still mixes boot
firmware and operating system. GRUB does not  need to be
located on the same boot medium, so the same U-Boot on SD
card could boot from USB disk. It becomes even more PC-like
when U-Boot can be stored internally, e. g., on eMMC, freeing
removable media slots for pure operating system images – now
the generic openSUSE JeOS-efi.aarch64 image can be used, or
openSUSE or SUSE Linux Enterprise Server 12 SP2 for ARM
installation  disks  for  custom  manual  or  AutoYaST based
partitioning, package selection, etc.

In  summary,  U-Boot v2016.05 and later  versions offer  a
quick  path  to  booting  UEFI-enabled  Linux  distributions  on
platforms where no other UEFI implementation is available.
The implementation adds conveniently little overhead; it does
not implement all possible UEFI based features, but it has been
demonstrated to be sufficient for booting Linux. No investment
into ACPI development is necessary due to FDT usage.

Obviously, forks of older U-Boot versions will not benefit
from this new feature and its future development, so vendors
are  encouraged  to  forward-port  and  submit  their  patches  in
order to merge them and to benefit from such contributions.

For new ARM SoCs no special considerations are needed;
enabling  CONFIG_DISTRO_DEFAULTS=y and  adding  the
distro framework macros to the environment is encouraged, to
facilitate a seemless boot flow.

Nothing  fundamentally  limits  this  implementation  to  the
ARM  architecture,  but  at  least  linker  scripts  would  need
adaptations for other architectures.

Similarly, nothing limits this to booting Linux distributions;
the same boot flow might be used for booting, e. g., Android.
Dual-booting  could  in  that  case  be  realized  as  boot  menu
entries at the GRUB layer.
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