
UEFI on Top of U-Boot
Standardizing Boot Flow For ARM Boards

Andreas Färber, Alexander Graf
SUSE

Nürnberg, Germany
{andreas.faerber,alexander.graf}@suse.com

Abstract—Booting is hard. Booting in the ARM world is even
harder. State of the art are a dozen different boot loaders that
may or may not deserve that name. Each gets configured
differently and each has its own pros and cons. For a Linux
distribution this is a nightmare. Configuring each and every one
of them complicates code that really should be very simple. To
solve the problem, one can just add another layer of abstraction
(GRUB2) on top of another layer of abstraction (UEFI) on top of
another layer of abstraction (U-Boot). Learn how all those layers
can make life easier for the distribution and how much fun UEFI
really is. Read how ARM systems boot, what UEFI really means,
how UEFI binaries interact with firmware, how openSUSE is
going to move to UEFI based boot on ARM and how UEFI
enables convergence of the Enterprise and Embedded markets.

Keywords—UEFI; U-Boot; GRUB; Linux; openSUSE; ARM;
ARMv8; AArch64

I. INTRODUCTION

Almost as diverse as ARM based chips are the boot
mechanisms encountered on them by software developers.
A common way to handle such variance is abstraction layers.

Section II compares boot mechanisms and explains some
software abstractions. Section III gives a quick overview of
UEFI, section IV presents a novel UEFI implementation and
section V concludes with a status summary.

II. BOOT FLOW ON INTEL VS. ARM

In Intel based PC, server and embedded markets, the Basic
Input/Output System (BIOS) [3] and in recent years the
Unified Extensible Firmware Interface (UEFI) [1] offer a
standardized boot flow for developers of operating systems and
appliances: Independent of processor model and vendor and
board model and vendor, BIOS implementations may load and
execute boot code from the first 424 bytes on the boot medium,
using a Master Boot Record (MBR). Similarly UEFI
implementations may load and execute a certain file from a
certain GUID Partition Table (GPT) partition on the boot
medium. Because BIOS and UEFI are two alternative boot
environments, the GRUB bootloader [4] offers another level of

abstraction to operating systems in how alternative kernels and
their configuration are stored.

SUSE as one Linux vendor have gone one step further with
their SUSE Linux Enterprise Server 12 family of products [5]
and standardize on GRUB not just for the 64-bit Intel/AMD
instruction set architecture but also for Power Architecture and
IBM zSystems mainframes ([6] section 8.4.8.9 “GRUB2 Is the
Supported Bootloader”).

Such abstractions, at the cost of a little boot time and
storage space, add value through software specialization and
through choice of software offerings, ultimately benefiting
customers and users.

By contrast, ARM based System-on-Chip (SoC) platforms
pose much more variance despite their compatible instruction
set architecture. While for the 64-bit ARM server market the
Server Base System Architecture (SBSA) [7] and Server Base
Boot Requirements (SBBR) [8] specifications have led to
adoption of UEFI, it has received little interest in the
Embedded and Mobile markets so far. Therefore on many
ARM based platforms, system developers still need to deploy a
highly hardware-specific firmware image rather than a generic
operating system image. The SoC may be designed to load
code from an offset in flash (e.g., NAND, SPI, eMMC, SD), or
from a file in a certain partition, or via serial or USB protocols.
For example, the Raspberry Pi single-board computer (with a
Broadcom BCM2835 SoC) loads a file bootcode.bin1 from the
first FAT16 partition in an MBR; the Qualcomm Snapdragon
family of SoCs load code from a certain GPT partition; the
NXP i.MX 6 family of SoCs load code from a 1024 byte offset;
the Marvell Armada 380 family of SoCs load code from offset
512; the 32-bit Allwinner SoCs load code from offset 8192; etc.
Since many of these locations are mutually exclusive to each
other as well as to UEFI, it is impossible to create a single
unified boot medium that boots on all of them. Additionally,
parts of the boot code need to be specific to the SoC and board
or board family, while SRAM and other size constraints rule
out a monolithic boot code implementation.

1 bootcode.bin is actually not ARM but VideoCore IV code, but
that does not matter from a software deployment perspective.

www.embedded-world.eu

This has resulted in two trends within the Linux ecosystem:

1) Hardware vendors created their own forked Linux
distributions, such as Raspbian for the Raspberry Pi, Bananian
for the Banana Pi, OrangeOS for the Orange Pi, Parabuntu for
the Parallella, Udoobuntu for Udoo, TurrisOS for Turris
Omnia, etc. Thereby for a new SoC (and board) users would
initially be bound to the vendor's software offering, both for
availability of software and for boot know-how.

2) Linux distributions needed to create board-specific
installation images, such as various openSUSE JeOS images or
the SUSE Linux Enterprise Server 12 SP2 for Raspberry Pi
product [12]. This poses Quality Assurance challenges in
particular for a rolling-release distribution like Tumbleweed.

For the SUSE Linux Enterprise Server 12 SP2 for ARM
product, shipping any SoC-specific media, bootloaders or
Device Trees was not a scalable solution. Yet at the same time
restricting the product to SBBR-compliant hardware was
undesirable for the SUSE Embedded business.

This left two solutions for SUSE partners:

a) Implement a UEFI compliant firmware for SoCs and
reference boards. The UEFI compliant firmware then loads
SUSE's GRUB from installation or storage medium – GRUB
then loads the Linux kernel from filesystem or network. Within
Linux, existing tools like yast-bootloader and grub2-mkconfig
can update the GRUB configuration for the next boot.

b) Continue using custom bootloaders, losing Enterprise-
class functionality like BTRFS snapshot boot and a convenient
installation method. The bootloader must then be able to load
the kernel from BTRFS, XFS and Ext4 volumes itself, and the
kernel command line would need to be maintained differently
for each bootloader. Also, Device Trees would need to get
delivered by the operating system rather than by firmware.

In practice, option a) so far meant the vendor either has to
buy AMI Aptio [14] or to fork and maintain Tianocore
EDK2 [15] as alternative bootloader.

For option b) only very recent versions of U-Boot [2] have
sufficient Ext4 filesystem support; and as of v2017.01 it has
neither XFS nor BTRFS support yet,2 forcing the use of a
separate Ext4 formatted /boot partition in that case.

The broad and scalable ARM SoC support in U-Boot led to
the idea of implementing a UEFI compliant boot command in
U-Boot, to combine the best of both worlds.

III. UNIFIED EXTENSIBLE FIRMWARE INTERFACE

Conceptually UEFI [1] provides its applications with two
types of services, Boot Services and Runtime Services
([1] sections 6 and 7). GRUB [4] will consume Boot Services
and Runtime Services, whereas Linux [10] consumes Boot
Services only during early start and may consume Runtime
Services only while it is actively running.3 Additionally it
provides Configuration Tables ([1] section 4.6).

2 Turris Omnia carries a patch for BTRFS support.
3 The Linux command line option efi=noruntime suppresses use

of Runtime Services.

UEFI is often confused with the Advanced Configuration
and Power Interface (ACPI) [9]. Since September 2013 both
specifications are published by Unified EFI Inc. and both are
mandated in the ARM SBBR [8], but UEFI can be used
without ACPI.

An EFI application is passed a pointer to a System Table
([1] section 4). The System Table provides among others
access to function callbacks for Boot Services and Runtime
Services as well as a list of the Configuration Tables.

Configuration Tables are identified by a Globally Unique
Identifier (GUID), allowing vendors to add tables not defined
in the UEFI specification. One such Configuration Table GUID
is defined by Linux for the Flat Device Tree (FDT), i. e. by
default Linux will search for a Configuration Table with the
FDT GUID and use its contents to initialize device drivers, and
only when this is absent or when acpi=force is used will Linux
search for a Configuration Table with an ACPI GUID.

Boot Services include callbacks for memory management,
timers, device discovery (e. g., storage, network, console,
framebuffer) and vendor extensions, as well as for “exiting” the
Boot Services, after which they may no longer be used by the
application.

Runtime Services include callbacks for managing time and
variables, as well as for system reset. These callbacks remain
available even after Boot Services have been discarded.

IV. IMPLEMENTING UEFI IN U-BOOT

Das U-Boot is a bootloader under GNU General Public
License with an active community and wide adoption in the
Embedded ARM market. It offers an interactive shell with
among others boot commands such as bootm, bootz and booti,
and a distro framework for non-interactive booting of Linux.

This distro framework specifically allows to execute a
boot.scr script file from a partition on a boot medium. This has
been used for openSUSE images and is supported in the kiwi
appliance tool, but the file and the command line arguments
therein are not updated by yast2-bootloader, so that the user
has to manually maintain the script file with mkimage. Kernel
version updates are handled by symlinking to the latest kernel,
initrd and the dtb directory – if an updated kernel fails to boot,
either the user needs to manually enter boot commands or
tweak the symlinks on the boot medium.

The distro framework further allows to load a config file
extlinux/extlinux.conf that can list multiple kernels that the user
can then select from. This comes close to GRUB functionality,
but openSUSE does not support the generation of this config
file that differs in location and syntax from grub.cfg.

GRUB actually has an arm-uboot backend for 32-bit ARM.
There are two problems with this, apart from not being
implemented for arm64: 1) GRUB hardcodes the physical
address of RAM, making the binary somewhat SoC-specific. 2)
It relies on an optional API feature of U-Boot, which is
disabled by default, therefore not build-tested for most targets
and appeared to be in poor shape. A UEFI implementation
could leverage U-Boot drivers, while allowing to boot a
generic GRUB binary.

www.embedded-world.eu

For some boards the distro framework had to be enabled.

The new configuration options CONFIG_EFI_LOADER=y
and CONFIG_CMD_BOOTEFI=y are enabled by default for
ARM and x86 targets. The latter makes available a bootefi
command that similar to other boot commands accepts the
address of a previously loaded binary (e. g., GRUB) and
optionally the address to use for the FDT Configuration Table.

The distro framework has been extended to scan partitions
for EFI/BOOT/BOOTARM.EFI or EFI/BOOT/BOOTAA64.EFI
files, as well as for the board-specific .dtb file, and to invoke
bootefi for them. If no matching .dtb file is found, it may fall
back to reusing the internal Device Tree used by U-Boot itself.

For implementing, e.g., reset Runtime Services, care has to
be taken to annotate any code and data used in the callback
implementation so that they do not get unmapped when Boot
Services are exited.

The UEFI implementation resulted in discovery of and
fixes for generic cache handling issues [16]. Due to EFI Boot
Services implementing their own memory management API,
and GRUB implementing yet another memory management
layer based on that, memory reservations had to be added for a
few SoCs that previously went undiscovered.

All callbacks for UEFI 2.5 compliance are provided, but
not all are implemented. For example, time functions would
require real-time clock drivers in U-Boot and would require
them to be designed to work as Runtime Services. And EFI
variables can't safely access the same eMMC or SD device
Linux drivers are using. For that reason U-Boot cannot provide
a random seed as EFI variable to Linux, resulting in a warning
in recent kernels that can be ignored.

V. SUMMARY AND OUTLOOK

As of U-Boot v2017.01, booting Linux kernels via GRUB
is known to be working on the following SoCs (boards):

• Allwinner A64 (Pine64)

• Altera Cyclone V (DE0-Nano-SoC)

• Amlogic S905 (Odroid-C2)

• Broadcom BCM2835/2836/2837 (Raspberry Pi 1/2/3)

• HiSilicon Kirin 620 (HiKey)

• Marvell Armada 388 (ClearFog)

• Nvidia Tegra K1 (Jetson TK1)

• NXP i.MX 6SoloX (Udoo Neo)

• NXP QorIQ LS2085A (LS2085ARDB)

• Rockchip RK3288 (Firefly-RK3288)

• Texas Instruments Sitara AM3358 (Beagle Bone)

• Xilinx Zynq UltraScale+ MPSoC (ZCU102)

Many openSUSE JeOS images that were using U-Boot
before have been updated to gain a separate EFI FAT partition

/boot/efi alongside an optional /boot partition and the / root
partition. U-Boot then detects GRUB on the first partition and
invokes bootefi for it. An openSUSE specific U-Boot patch lets
it search for the Device Tree on the second rather than current
partition, since openSUSE dtb packages install to /boot/dtb
rather than to EFI-specific /boot/efi/dtb, which on FAT would
not allow symlinks either.

For example, the openSUSE JeOS-raspberrypi3.aarch64
image on an SD card will result in the boot ROM loading
bootcode.bin from the first partition, in turn loading u-boot.bin
from that partition; U-Boot loads EFI/BOOT/BOOTAA64.EFI
from there, as well as dtb/broadcom/bcm2837-rpi-3-b.dtb if it
exists on the following Ext4 partition, using U-Boot's SDHCI,
partition and filesystem drivers; GRUB then loads, e.g., Image-
4.9.0-1-default and initrd-4.9.0-1-default via EFI Boot
Services, indirectly using the SDHCI driver of U-Boot but
using partition and filesystem drivers of GRUB; finally Linux
gets the Device Tree indirectly through the FDT Configuration
Table, uses EFI Boot Services for initial output, loads its own
drivers and exits EFI Boot Services. When the user reboots,
Linux calls into EFI Runtime Services, where the tiny
remaining part of U-Boot performs the hardware reset.

But that is a rather traditional example that still mixes boot
firmware and operating system. GRUB does not need to be
located on the same boot medium, so the same U-Boot on SD
card could boot from USB disk. It becomes even more PC-like
when U-Boot can be stored internally, e. g., on eMMC, freeing
removable media slots for pure operating system images – now
the generic openSUSE JeOS-efi.aarch64 image can be used, or
openSUSE or SUSE Linux Enterprise Server 12 SP2 for ARM
installation disks for custom manual or AutoYaST based
partitioning, package selection, etc.

In summary, U-Boot v2016.05 and later versions offer a
quick path to booting UEFI-enabled Linux distributions on
platforms where no other UEFI implementation is available.
The implementation adds conveniently little overhead; it does
not implement all possible UEFI based features, but it has been
demonstrated to be sufficient for booting Linux. No investment
into ACPI development is necessary due to FDT usage.

Obviously, forks of older U-Boot versions will not benefit
from this new feature and its future development, so vendors
are encouraged to forward-port and submit their patches in
order to merge them and to benefit from such contributions.

For new ARM SoCs no special considerations are needed;
enabling CONFIG_DISTRO_DEFAULTS=y and adding the
distro framework macros to the environment is encouraged, to
facilitate a seemless boot flow.

Nothing fundamentally limits this implementation to the
ARM architecture, but at least linker scripts would need
adaptations for other architectures.

Similarly, nothing limits this to booting Linux distributions;
the same boot flow might be used for booting, e. g., Android.
Dual-booting could in that case be realized as boot menu
entries at the GRUB layer.

www.embedded-world.eu

REFERENCES

[1] Unified EFI Inc., “Unified Extensible Firmware Interface Specification,”
Version 2.6, January 2016.

[2] Wolfgang Denk et al., “Das U-Boot,” http://www.denx.de/wiki/U-
Boot/WebHome

[3] Compaq Computer Corp., Phoenix Technologies Ltd. and Intel Corp.,
“BIOS Boot Specification,” Version 1.01, January 11, 1996.

[4] Yoshinori K. Okuji, Free Software Foundation Inc. et al., “GNU
GRUB,” https://www.gnu.org/software/grub/

[5] SUSE LLC, “SUSE Linux Enterprise 12 Now Available,” October 27
2014, https://www.suse.com/newsroom/post/2014/suse-linux-enterprise-
12-now-available/

[6] SUSE LLC, “SUSE Linux Enterprise Server 12 Release Notes,”
https://www.suse.com/releasenotes/x86_64/SUSE-SLES/12/

[7] ARM Ltd., “Server Base System Architecture Specification,”
http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.den0029/index.html

[8] ARM Ltd., “ARM Server Base Boot Requirements (SBBR),”
http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.den0044b/index.html

[9] Unified EFI Inc., “Advanced Configuration and Power Interface
Specification,” Version 6.1, January 2016.

[10] Linus Torvalds et al., Linux kernel, https://www.kernel.org/

[11] Alexander Graf, “[PATCH 0/9] EFI payload / application support,”
U-Boot mailing list, December 22 2015.

[12] SUSE LLC, “SUSE Linux Enterprise Server for Raspberry Pi,”
https://www.suse.com/products/arm/raspberry-pi

[13] SUSE LLC, “SUSE Linux Enterprise Server for ARM,”
https://www.suse.com/products/arm/

[14] American Megatrends Inc., “Aptio V: ARM Benefits,”
https://ami.com/products/bios-uefi-firmware/aptio-v/arm-benefits/

[15] Intel Corp. et al., “EDK II,” http://www.tianocore.org/edk2/

[16] Ziyuan Xu, “[PATCH v3 4/4] usb: dwc2: invalidate dcache before
starting DMA,” http://patchwork.ozlabs.org/patch/645189/

www.embedded-world.eu

https://www.gnu.org/software/grub/
http://patchwork.ozlabs.org/patch/645189/
http://www.tianocore.org/edk2/
https://ami.com/products/bios-uefi-firmware/aptio-v/arm-benefits/
https://www.suse.com/products/arm/
https://www.suse.com/products/arm/raspberry-pi
https://www.kernel.org/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0044b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0044b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0029/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0029/index.html
https://www.suse.com/releasenotes/x86_64/SUSE-SLES/12/
https://www.suse.com/newsroom/post/2014/suse-linux-enterprise-12-now-available/
https://www.suse.com/newsroom/post/2014/suse-linux-enterprise-12-now-available/
http://www.denx.de/wiki/U-Boot/WebHome
http://www.denx.de/wiki/U-Boot/WebHome

	I. Introduction
	II. Boot Flow on Intel vs. ARM
	III. Unified Extensible Firmware Interface
	IV. Implementing UEFI in U-Boot
	V. Summary and Outlook
	References

